Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 101: 117634, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38359754

ABSTRACT

Synthesis and biological evaluation of a small, focused library of 1,3-disubstituted-1,2,4-triazin-6-ones for in vitro inhibitory activity against androgen-receptor-dependent (22Rv1) and androgen-receptor independent (PC3) castration-resistant prostate cancer (CRPC) cells led to highly active compounds with in vitro IC50 values against 22Rv1 cells of <200 nM, and with apparent selectivity for this cell type over PC3 cells. From metabolic/PK evaluations of these compounds, a 3-benzyl-1-(2,4-dichlorobenzyl) derivative had superior properties and showed considerably stronger activity, by nearly an order of magnitude, against AR-dependent LNCaP and C4-2B cells compared to AR-independent DU145 cells. This lead compound decreased AR expression in a dose and time dependent manner and displayed promising therapeutic effects in a 22Rv1 CRPC xenograft mouse model. Computational target prediction and subsequent docking studies suggested three potential known prostate cancer targets: p38a MAPK, TGF-ß1, and HGFR/c-Met, with the latter case of c-Met appearing stronger, owing to close structural similarity of the lead compound to known pyridazin-3-one derivatives with potent c-Met inhibitory activity. RNA-seq analysis showed dramatic reduction of AR signalling pathway and/or target genes by the lead compound, subsequently confirmed by quantitative PCR analysis. The lead compound was highly inhibitory against HGF, the c-Met ligand, which fitted well with the computational target prediction and docking studies. These results suggest that this compound could be a promising starting point for the development of an effective therapy for the treatment of CRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Triazines , Animals , Humans , Male , Mice , Androgens/metabolism , Cell Line, Tumor , Prostate/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Triazines/chemistry , Triazines/pharmacology
2.
J Thromb Haemost ; 19(3): 689-700, 2021 03.
Article in English | MEDLINE | ID: mdl-33314621

ABSTRACT

BACKGROUND: Vitamin K antagonists (VKAs), such as warfarin, have remained the cornerstone of oral anticoagulation therapy in the prevention and treatment of thromboembolism for more than half a century. They function by impairing the biosynthesis of vitamin K-dependent (VKD) clotting factors through the inhibition of vitamin K epoxide reductase (VKOR). The challenge of VKAs therapy is their narrow therapeutic index and highly variable dosing requirements, which are partially the result of genetic variations of VKOR. OBJECTIVES: The goal of this study was to search for an improved VKA that is tolerant to the genetic variations of its target enzyme. METHODS: A series of vitamin K derivatives with benzyl and related side-chain substitutions at the 3-position of 1,4-naphthoquinone were synthesized. The role of these compounds in VKD carboxylation was evaluated by mammalian cell-based assays and conventional in vitro activity assays. RESULTS: Our results showed that replacing the phytyl side-chain with a methylene cyclooctatetraene (COT) moiety at the 3-position of vitamin K1 converted it from a substrate to an inhibitor for VKD carboxylation. Strikingly, this COT-vitamin K derivative displayed a similar inhibition potency in warfarin-resistant VKOR mutations whose warfarin resistance varied more than 400-fold. Further characterization of COT-vitamin K for the inhibition of VKD carboxylation suggested that this compound targets multiple enzymes in the vitamin K redox cycle. Importantly, the anticoagulation effect of COT-vitamin K can be rescued with high doses of vitamin K1 . CONCLUSION: We discovered a vitamin K analogue that functions as a VKA and is tolerant to genetic variations in the target enzyme.


Subject(s)
Anticoagulants , Vitamin K , Animals , Blood Coagulation , Vitamin K 1 , Vitamin K Epoxide Reductases/genetics , Warfarin
3.
Chem Commun (Camb) ; 51(2): 334-7, 2015.
Article in English | MEDLINE | ID: mdl-25407918

ABSTRACT

An efficient nitro-Mannich type direct α-C(sp(3))-H functionalisation of N-aryl-1,2,3,4-tetrahydroisoquinolines catalysed by simple iron salts in combination with O2 as the terminal oxidant is described. The use of a Teflon AF-2400 membrane Tube-in-Tube reactor under continuous flow conditions allowed for considerable process intensification to be achieved relative to previous batch methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...